skip to main content


Search for: All records

Creators/Authors contains: "Traylor, Shawnee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A unique combination of data collected from fixed instruments, spatial surveys, and a long‐term observing network in the Hudson River demonstrate the importance of spatial and temporal variations in atmospheric gas flux. The atmospheric exchanges of oxygen (O2) and carbon dioxide (CO2) exhibit variability at a range of time scales including pronounced modulation driven by spring‐neap variations in stratification and mixing. During weak neap tides, bottom waters become enriched in pCO2and depleted in dissolved oxygen because strong stratification limits vertical mixing and isolates sub‐pycnocline water from atmospheric exchange. Estuarine circulation also is enhanced during neap tides so that bottom waters, and their associated dissolved gases, are transported up‐estuary. Strong mixing during spring tides effectively ventilates bottom waters resulting in enhanced CO2evasion and O2invasion. The spring‐neap modulation in the estuarine portion of the Hudson River is enhanced because fortnightly variations in mixing have a strong influence on phytoplankton dynamics, allowing strong blooms to occur during weak neap tides. During blooms, periods of CO2invasion and O2evasion occur over much of the lower stratified estuary. The along‐estuary distribution of stratification, which decreases up‐estuary, favors enhanced gas exchange near the limit of salt, where vertical stratification is absent. This region, which we call the estuarine gas exchange maximum (EGM), results from the convergence in bottom transport and is analogous to the estuarine turbidity maximum (ETM). Much like the ETM, the EGM is likely to be a common feature in many partially mixed and stratified estuarine systems.

     
    more » « less
  2. The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set. 
    more » « less